「劣加法的集合函数」を解説文に含む見出し語の検索結果(1~10/11件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/04/21 20:53 UTC 版)「集合函数」の記事における「各性質の間の関係」の解説任意の σ-加法的集合函数は有限加法...
数学における劣加法的集合函数(れつかほうてきしゅうごうかんすう、英: subadditive set function)は、二つの集合の合併に対する値が、それぞれの集合に対する値の和で上から抑えられる...
数学における劣加法的集合函数(れつかほうてきしゅうごうかんすう、英: subadditive set function)は、二つの集合の合併に対する値が、それぞれの集合に対する値の和で上から抑えられる...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学における集合函数(しゅうごうかんすう、英: set-function)は集合を変数(入力、引数)とする函数である。集合函数は出力としてふつうは数を返すが、しばしば出力として無限大を許す(す...
数学における集合函数(しゅうごうかんすう、英: set-function)は集合を変数(入力、引数)とする函数である。集合函数は出力としてふつうは数を返すが、しばしば出力として無限大を許す(す...
< 前の結果 | 次の結果 >