「バナッハ空間上の核作用素」を解説文に含む見出し語の検索結果(1~10/13件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/15 01:39 UTC 版)「フレドホルム核」の記事における「バナッハ空間上の核作用素」の解説作用素 L : B &...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 08:02 UTC 版)「次元 (ベクトル空間)」の記事における「トレースによる特徴づけ」の解説「跡 (線型代数...
ナビゲーションに移動検索に移動数学の分野におけるフレドホルム核(フレドホルムかく、英: Fredholm kernel)とは、あるバナッハ空間上の核で、その空間の核作用素と関連するものである。
ナビゲーションに移動検索に移動数学の分野におけるフレドホルム核(フレドホルムかく、英: Fredholm kernel)とは、あるバナッハ空間上の核で、その空間の核作用素と関連するものである。
数学の分野における核作用素(かくさようそ、英: Nuclear operator)とは、基底の選び方に依らない有限のトレースを定義出来るような、あるコンパクト作用素のことを言う(ただし、この定義は少な...
数学の分野における核作用素(かくさようそ、英: Nuclear operator)とは、基底の選び方に依らない有限のトレースを定義出来るような、あるコンパクト作用素のことを言う(ただし、この定義は少な...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
< 前の結果 | 次の結果 >