j-invariantとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > j-invariantの意味・解説 

j-不変量

(j-invariant から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/26 02:30 UTC 版)

複素平面内のクラインの j-不変量

数学では複素変数 τ の函数であるフェリックス・クラインj-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された SL(2, Z) のウェイト 0 のモジュラー函数である。j-不変量として、尖点で一位の極を持つ以外は正則な関数であり、次を満たすものが一意に定まる。

上半平面上に作用するモジュラ群の基本領域

2つの変換 τ → τ + 1 と τ → -τ−1モジュラ群と呼ばれるを生成し、この群は射影特殊線型群 PSL(2, Z) と同一視できる。この群に属する適当な変換




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「j-invariant」の関連用語

j-invariantのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



j-invariantのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのj-不変量 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS