オイラーの五角数定理
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2018年9月) |
数学において、オイラーの五角数定理(オイラーのごかくすうていり、Euler's pentagonal number theorem)は次式が恒等式であることを主張する定理である[1]。
ここで m を最下行の要素数とする(この図では m = 3)。また s を「1つ上の行より1少ないという関係が続いている部分」のうち、もっとも右側にあるものの長さとする(この例ではs = 2。図の赤い点で示される)。 このとき m > s ならば、赤い点の部分を最下部に付け加えることで新しい分割を作ることができる。
もし m ≤ s であるなら(この新しい図では m = 2, s = 5 となりこの条件を満たす)、先ほどと逆の操作をすることで、新しい分割を作ることができる。例えば上図にこの操作をすると、はじめの図に戻る。
この操作は後に述べる例外を除き、必ず分割の偶奇性を変える。また同じ操作を二回繰り返すともとに戻る。この結果から、偶数分割と奇数分割のペアを対応させることができ、五角数定理において+1と-1が割当てられている項どうしが相殺される。この例は 7 + 6 + 4 + 3 <-> 6 + 5 + 4 + 3 + 2 という対応を表している。
この対応が成り立たない例外は以下のケースである。
1) m = s であり、すべての行が1つ上の行より1少ないという関係になっている。
この場合、先に述べた操作をすると
となり分割の偶奇性が変化しない。またこの操作を繰り返してももとには戻らない。この例では 5 + 4 + 3 -> 6 + 5 + 1 -> 7 + 5 となる。このような条件が満たす n は以下の式で求まる。m をもとの図の最下部の数とすると
これに先に述べた操作をすると、同じ要素数の行が2つできてしまい、これは相異なる自然数への分割という条件を満たさなる。この例では 6 + 5 + 4 -> 5 + 4 + 3 + 3 となる。このときの n は
「Pentagonal number theorem」の例文・使い方・用例・文例
- Pentagonal number theoremのページへのリンク