モーレーカルタンの微分形式とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > モーレーカルタンの微分形式の意味・解説 

モーレー・カルタンの微分形式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/16 01:32 UTC 版)

数学において、モーレー・カルタンの微分形式 (Maurer–Cartan form) あるいはMaurer–Cartan 形式とは、リー群の上に自然に定められ、構造の無限小近似を与える1次微分形式のことである。エリ・カルタンによる動標構の理論の中で大きな役割を果たし、この理論に貢献のあったルートヴィヒ・マウラー英語版 (Ludwig Maurer) とともにその名前が付けられている。

リー群 G の Maurer–Cartan 形式は Gリー環に値をとる微分形式である。このリー環は G の単位元における接ベクトル空間 TeG と同一視できるため、Maurer–Cartan 形式は G の各点 g における接空間 TgG から TeG への写像と見なすことができる。この見方に立つと、Maurer–Cartan 形式は g における接ベクトル X に対して、左から g−1 をかけることで定まる G 上の微分同相による像

この節には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。2017年11月

参考文献

  • R. W. Sharpe (1996). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer-Verlag, Berlin. ISBN 0-387-94732-9 
  • Shlomo Sternberg (1964). “Chapter V, Lie Groups. Section 2, Invariant forms and the Lie algebra.”. Lectures on differential geometry. Prentice-Hall. LCCN 64-7993 
  • 日本数学会 編『岩波数学辞典』(4版)岩波書店、2007年。ISBN 978-4000803090 



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

モーレーカルタンの微分形式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



モーレーカルタンの微分形式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのモーレー・カルタンの微分形式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS