標準模型を超える物理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 標準模型を超える物理の意味・解説 

標準模型を超える物理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/07 09:14 UTC 版)

標準模型を超える物理(ひょうじゅんもけいをこえるぶつり、Physics beyond the Standard Model, BSM)とは、標準模型では説明できない強いCP問題、ニュートリノ振動物質-反物質非対称性英語版暗黒物質ダークエネルギーの性質などを説明するために必要な理論の拡張のことをいう[1]。さらには標準模型の数学的枠組み自体にある問題を解決するための拡張がある。標準模型と一般相対性理論の数学的枠組みは、特定の条件化では(例えばビッグバンブラックホール事象の地平線のようなすでに知られた時空特異点において)一方もしくは両方の理論が破綻するという矛盾を抱えている。


  1. ^ Beyond the Standard Model”. Symmetry Magazine (2005年2月). 2007年10月17日時点のオリジナルよりアーカイブ。2010年11月23日閲覧。
  2. ^ Lykken, J. D. (2010). “Beyond the Standard Model”. CERN Yellow Report. CERN. pp. 101–109. arXiv:1005.1676. Bibcode2010arXiv1005.1676L. CERN-2010-002 
  3. ^ Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). “New Experimental Limits on Non-Newtonian Forces in the Micrometer Range”. Physical Review Letters 107 (17): 171101. arXiv:1108.2547. Bibcode2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID 22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible."  But see also Donoghue, John F. (2012). “The effective field theory treatment of quantum gravity”. AIP Conference Proceedings 1473 (1): 73. arXiv:1209.3511. Bibcode2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that “general relativity and quantum mechanics are incompatible”. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past."" 
  4. ^ Krauss, L. (2009). A Universe from Nothing. AAI Conference.
  5. ^ Randolf Pohl; Ronald Gilman; Gerald A. Miller; Krzysztof Pachucki (2013). “Muonic hydrogen and the proton radius puzzle”. Annu. Rev. Nucl. Part. Sci. 63: 175–204. arXiv:1301.0905. Bibcode2013ARNPS..63..175P. doi:10.1146/annurev-nucl-102212-170627. "The recent determination of the proton radius using the measurement of the Lamb shift in the muonic hydrogen atom startled the physics world. The obtained value of 0.84087(39) fm differs by about 4% or 7 standard deviations from the CODATA value of 0.8775(51) fm. The latter is composed from the electronic hydrogenate atom value of 0.8758(77) fm and from a similar value with larger uncertainties determined by electron scattering." 
  6. ^ Carlson, Carl E. (May 2015). “The Proton Radius Puzzle”. Progress in Particle and Nuclear Physics 82: 59–77. arXiv:1502.05314. Bibcode2015PrPNP..82...59C. doi:10.1016/j.ppnp.2015.01.002. 
  7. ^ Thomas Blum; Achim Denig; Ivan Logashenko; Eduardo de Rafael (2013). "The Muon (g - 2) Theory Value: Present and Future". arXiv:1311.2198
  8. ^ Lees, J. P. (2012). “Evidence for an excess of B → D(*) τ− τν decays”. Physical Review Letters 109 (10): 101802. arXiv:1205.5442. Bibcode2012PhRvL.109j1802L. doi:10.1103/PhysRevLett.109.101802. PMID 23005279. 
  9. ^ Aaij, R. (2015). “Measurement of the Ratio of Branching Fractions ...”. Physical Review Letters 115 (11): 111803. arXiv:1506.08614. Bibcode2015PhRvL.115k1803A. doi:10.1103/PhysRevLett.115.111803. PMID 26406820. 
  10. ^ Clara Moskowitz (2015年9月9日). “2 Accelerators Find Particles That May Break Known Laws of Physics”. Scientific American. 2019年9月閲覧。
  11. ^ Capdevila, Bernat (2018). “Patterns of New Physics in transitions in the light of recent data”. Journal of High Energy Physics 2018: 093. arXiv:1704.05340. doi:10.1007/JHEP01(2018)093. 
  12. ^ O'Luanaigh (2013年3月14日). “New results indicate that new particle is a Higgs boson”. CERN. 2019年9月閲覧。
  13. ^ Marco Frasca (2009年3月31日). “What is a Glueball?”. The Gauge Connection. 2019年9月閲覧。
  14. ^ The Hierarchy Problem”. Of Particular Significance (2011年8月14日). 2015年12月13日閲覧。
  15. ^ Callaway, D. J. E. (1988). “Triviality Pursuit: Can Elementary Scalar Particles Exist?”. Physics Reports 167 (5): 241–320. Bibcode1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7. 
  16. ^ Mannel, Thomas (2–8 July 2006). "Theory and Phenomenology of CP Violation" (PDF). Nuclear Physics B, vol. 167. The 7th International Conference on Hyperons, Charm And Beauty Hadrons (BEACH 2006). 167. Lancaster: Elsevier. pp. 170–174. Bibcode:2007NuPhS.167..170M. doi:10.1016/j.nuclphysbps.2006.12.083. 2015年8月15日閲覧
  17. ^ Peskin, M. E.; Schroeder, D. V. (1995). An introduction to quantum field theory. Addison-Wesley. pp. 786–791. ISBN 978-0-201-50397-5 
  18. ^ a b Buchmüller, W. (2002). "Neutrinos, Grand Unification and Leptogenesis". arXiv:hep-ph/0204288
  19. ^ Magnetic Monopoles”. Particle Data Group (2009年). 2010年12月20日閲覧。
  20. ^ P., Nath; P. F., Perez (2007). “Proton stability in grand unified theories, in strings, and in branes”. Physics Reports 441 (5–6): 191–317. arXiv:hep-ph/0601023. Bibcode2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. 
  21. ^ Peskin, M. E.; Schroeder, D. V. (1995). An introduction to quantum field theory. Addison-Wesley. pp. 713–715. ISBN 978-0-201-50397-5. https://archive.org/details/introductiontoqu0000pesk 
  22. ^ Nakamura, K. (2010年). “Neutrino Properties”. Particle Data Group. 2012年12月12日時点のオリジナルよりアーカイブ。2010年12月20日閲覧。
  23. ^ Mohapatra, R. N.; Pal, P. B. (2007). Massive neutrinos in physics and astrophysics. Lecture Notes in Physics. 72 (3rd ed.). World Scientific. ISBN 978-981-238-071-5 
  24. ^ Senjanovic, G. (2011). "Probing the Origin of Neutrino Mass: from GUT to LHC". arXiv:1107.5322 [hep-ph]。
  25. ^ Grossman, Y. (2003). "TASI 2002 lectures on neutrinos". arXiv:hep-ph/0305245v1
  26. ^ Dodelson, S.; Widrow, L. M. (1994). “Sterile neutrinos as dark matter”. Physical Review Letters 72 (1): 17–20. arXiv:hep-ph/9303287. Bibcode1994PhRvL..72...17D. doi:10.1103/PhysRevLett.72.17. PMID 10055555. 
  27. ^ Minkowski, P. (1977). “μ → e γ at a Rate of One Out of 109 Muon Decays?”. Physics Letters B 67 (4): 421. Bibcode1977PhLB...67..421M. doi:10.1016/0370-2693(77)90435-X. 
  28. ^ Mohapatra, R. N.; Senjanovic, G. (1980). “Neutrino mass and spontaneous parity nonconservation”. Physical Review Letters 44 (14): 912. Bibcode1980PhRvL..44..912M. doi:10.1103/PhysRevLett.44.912. 
  29. ^ Keung, W.-Y.; Senjanovic, G. (1983). “Majorana Neutrinos And The Production Of The Right-handed Charged Gauge Boson”. Physical Review Letters 50 (19): 1427. Bibcode1983PhRvL..50.1427K. doi:10.1103/PhysRevLett.50.1427. 
  30. ^ Gell-Mann, M.; Ramond, P.; Slansky, R. (1979). P. van Nieuwenhuizen. ed. Supergravity. North Holland 
  31. ^ Glashow, S. L. (1979). M. Levy. ed. Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons. Plenum Press 
  32. ^ Altarelli, G. (2007). "Lectures on Models of Neutrino Masses and Mixings". arXiv:0711.0161 [hep-ph]。
  33. ^ Murayama, H. (2007). "Physics Beyond the Standard Model and Dark Matter". arXiv:0704.2276 [hep-ph]。
  34. ^ Harari, H. (1979). “A Schematic Model of Quarks and Leptons”. Physics Letters B 86 (1): 83–86. Bibcode1979PhLB...86...83H. doi:10.1016/0370-2693(79)90626-9. OSTI 1447265. https://www.osti.gov/biblio/1447265. 
  35. ^ Shupe, M. A. (1979). “A Composite Model of Leptons and Quarks”. Physics Letters B 86 (1): 87–92. Bibcode1979PhLB...86...87S. doi:10.1016/0370-2693(79)90627-0. 
  36. ^ Zenczykowski, P. (2008). “The Harari-Shupe preon model and nonrelativistic quantum phase space”. Physics Letters B 660 (5): 567–572. arXiv:0803.0223. Bibcode2008PhLB..660..567Z. doi:10.1016/j.physletb.2008.01.045. 
  37. ^ a b Smolin, L. (2001). Three Roads to Quantum Gravity. Basic Books. ISBN 978-0-465-07835-6 
  38. ^ Abdo, A.A. (2009). “A limit on the variation of the speed of light arising from quantum gravity effects”. Nature 462 (7271): 331–334. arXiv:0908.1832. Bibcode2009Natur.462..331A. doi:10.1038/nature08574. PMID 19865083. 
  39. ^ Maldacena, J.; Strominger, A.; Witten, E. (1997). “Black hole entropy in M-Theory”. Journal of High Energy Physics 1997 (12): 2. arXiv:hep-th/9711053. Bibcode1997JHEP...12..002M. doi:10.1088/1126-6708/1997/12/002. 
  40. ^ Randall, L.; Sundrum, R. (1999). “Large Mass Hierarchy from a Small Extra Dimension”. Physical Review Letters 83 (17): 3370–3373. arXiv:hep-ph/9905221. Bibcode1999PhRvL..83.3370R. doi:10.1103/PhysRevLett.83.3370. 
  41. ^ Randall, L.; Sundrum, R. (1999). “An Alternative to Compactification”. Physical Review Letters 83 (23): 4690–4693. arXiv:hep-th/9906064. Bibcode1999PhRvL..83.4690R. doi:10.1103/PhysRevLett.83.4690. 


「標準模型を超える物理」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「標準模型を超える物理」の関連用語

標準模型を超える物理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



標準模型を超える物理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの標準模型を超える物理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS