「階数 (線型代数学)」を解説文に含む見出し語の検索結果(51~60/535件中)
線型代数学におけるベクトル空間の間の線型写像の転置(てんち、英: transpose)は、各ベクトル空間の双対空間の間に誘導される。そのような転置写像 (transpose of a linear m...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/12/12 08:51 UTC 版)「直線束 (射影幾何学)」の記事における「超平面束」の解説付随するベクトル空間 E を持...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...