「自乗可積分函数」を解説文に含む見出し語の検索結果(51~60/92件中)
線型代数学における有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、英: orthonormal basis)は正規直交系を成すような V の基底である[1] ...
線型代数学における有限次元内積空間 V の正規直交基底(せいきちょっこうきてい、英: orthonormal basis)は正規直交系を成すような V の基底である[1] ...
線型代数学における基底(きてい、英: basis)は線型空間の線型独立な生成系である[1]。概要あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換え...
線型代数学における基底(きてい、英: basis)は線型空間の線型独立な生成系である[1]。概要あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換え...
線型代数学における基底(きてい、英: basis)は線型空間の線型独立な生成系である[1]。概要あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換え...
線型代数学における基底(きてい、英: basis)は線型空間の線型独立な生成系である[1]。概要あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換え...
数学におけるガトー微分(ガトーびぶん、英: Gâteaux differential, Gâteaux derivative)は、第一次世界大戦において夭折したフランス人数学者ルネ・ガトー(英...
数学におけるガトー微分(ガトーびぶん、英: Gâteaux differential, Gâteaux derivative)は、第一次世界大戦において夭折したフランス人数学者ルネ・ガトー(英...
ナビゲーションに移動検索に移動数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、英語: Pontryagin duality)はフーリエ変換の一...
ナビゲーションに移動検索に移動数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、英語: Pontryagin duality)はフーリエ変換の一...