「アルティン的」を解説文に含む見出し語の検索結果(51~60/76件中)
数学において、有限生成加群(ゆうげんせいせいかぐん、英: finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群...
代数学において、森田同値(もりたどうち、英: Morita equivalence)とは、環論的な多くの性質を保つ環の間の関係のことを言う。これはMorita (1958)において同値関係と双...
代数学において、森田同値(もりたどうち、英: Morita equivalence)とは、環論的な多くの性質を保つ環の間の関係のことを言う。これはMorita (1958)において同値関係と双...
ナサン・ジャコブソン(1910–1999)数学、より詳しくは抽象代数学の一分野である環論において、環 R のジャコブソン根基あるいはヤコブソン根基(英: Jacobson radical)とは...
ナサン・ジャコブソン(1910–1999)数学、より詳しくは抽象代数学の一分野である環論において、環 R のジャコブソン根基あるいはヤコブソン根基(英: Jacobson radical)とは...
ナサン・ジャコブソン(1910–1999)数学、より詳しくは抽象代数学の一分野である環論において、環 R のジャコブソン根基あるいはヤコブソン根基(英: Jacobson radical)とは...
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...