「岩波講座_基礎数学」を解説文に含む見出し語の検索結果(41~50/63件中)
数学におけるテンソルの座標に依らない(英語版)現代的な取扱いは、テンソル空間(テンソルくうかん、英: tensor space)と呼ばれる抽象代数学的な対象の元として、ある種の多重線型性によっ...
ナビゲーションに移動検索に移動数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、英: Euclidean domain)あるいはユークリッド環(ユークリッドかん、英...
ナビゲーションに移動検索に移動数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、英: Euclidean domain)あるいはユークリッド環(ユークリッドかん、英...
ナビゲーションに移動検索に移動数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、英: Euclidean domain)あるいはユークリッド環(ユークリッドかん、英...
数学および理論物理学において、テンソルが添字の対に関して反対称 (antisymmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符...
数学および理論物理学において、テンソルが添字の対に関して反対称 (antisymmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符...
固有射(こゆうしゃ、英: proper morphism)とは、スキームの射で、複素解析空間の固有写像の代数幾何学における類似物である。体 k 上固有な 代数多様体は完備多様体(英語版)とも呼...
固有射(こゆうしゃ、英: proper morphism)とは、スキームの射で、複素解析空間の固有写像の代数幾何学における類似物である。体 k 上固有な 代数多様体は完備多様体(英語版)とも呼...
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカル...
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数多項式からなる連立方程式の解集合として定義される図形である。代数幾何学の最も主要な研究対象であり、デカル...