「「和」について」を解説文に含む見出し語の検索結果(41~50/251件中)
数学における σ-集合環(シグマしゅうごうかん、英: σ-ring [of sets])あるいは σ-環は、σ-集合代数(あるいはトライブ[1])より少し一般の定義を持つ集合族...
ホンフリー多項式(ホンフリーたこうしき、HOMFLY polynomial)またはホムフリー多項式とは、位相幾何学の一分野である結び目理論において、有向絡み目に対する2変数の多項式不変量である。ホンフ...
ホンフリー多項式(ホンフリーたこうしき、HOMFLY polynomial)またはホムフリー多項式とは、位相幾何学の一分野である結び目理論において、有向絡み目に対する2変数の多項式不変量である。ホンフ...
ホンフリー多項式(ホンフリーたこうしき、HOMFLY polynomial)またはホムフリー多項式とは、位相幾何学の一分野である結び目理論において、有向絡み目に対する2変数の多項式不変量である。ホンフ...
ホンフリー多項式(ホンフリーたこうしき、HOMFLY polynomial)またはホムフリー多項式とは、位相幾何学の一分野である結び目理論において、有向絡み目に対する2変数の多項式不変量である。ホンフ...
ホンフリー多項式(ホンフリーたこうしき、HOMFLY polynomial)またはホムフリー多項式とは、位相幾何学の一分野である結び目理論において、有向絡み目に対する2変数の多項式不変量である。ホンフ...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...
数学の分野における劣加法性(れつかほうせい、英: subadditivity)とは、大まかに言うと、定義域に含まれる二つの元の和についての関数の値が、それら各元についての関数の値の和よりも常に...