「擬微分作用素」を解説文に含む見出し語の検索結果(31~40/68件中)
解析学賞(かいせきがくしょう)は日本数学会解析学5分科会(函数論分科会、函数方程式論分科会、実函数論分科会、函数解析学分科会、統計数学分科会)により創設された学術賞。毎年3件以内の研究を選考する。20...
ナビゲーションに移動検索に移動原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。正確な語句に改訳できる方を求めています。函数...
ナビゲーションに移動検索に移動原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。正確な語句に改訳できる方を求めています。函数...
ナビゲーションに移動検索に移動原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。正確な語句に改訳できる方を求めています。函数...
アティヤ=シンガーの指数定理(アティヤ=シンガーのしすうていり、英: Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素に...
アティヤ=シンガーの指数定理(アティヤ=シンガーのしすうていり、英: Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素に...
アティヤ=シンガーの指数定理(アティヤ=シンガーのしすうていり、英: Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素に...
アティヤ=シンガーの指数定理(アティヤ=シンガーのしすうていり、英: Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素に...
アティヤ=シンガーの指数定理(アティヤ=シンガーのしすうていり、英: Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素に...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...