「実二次正方行列」を解説文に含む見出し語の検索結果(31~40/44件中)
虚数(きょすう、英: imaginary number)とは、実数ではない複素数のことである。すなわち、虚数単位 i = √−1 を用いて表すと、z = a + bi(...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
数学 > 線型代数学 > 行列値関数 > 行列の対数数学において、行列の対数(ぎょうれつのたいすう、英語: Logarithm of a matrix)とは、行列...