「数理計画問題」を解説文に含む見出し語の検索結果(141~150/166件中)
二次計画法(にじけいかくほう、英: quadratic programming, QP)は、数理最適化における非線形計画法の代表例の一つであり、いくつかの変数からなる二次関数を線形制約の下で最...
二次計画法(にじけいかくほう、英: quadratic programming, QP)は、数理最適化における非線形計画法の代表例の一つであり、いくつかの変数からなる二次関数を線形制約の下で最...
二次計画法(にじけいかくほう、英: quadratic programming, QP)は、数理最適化における非線形計画法の代表例の一つであり、いくつかの変数からなる二次関数を線形制約の下で最...
二次計画法(にじけいかくほう、英: quadratic programming, QP)は、数理最適化における非線形計画法の代表例の一つであり、いくつかの変数からなる二次関数を線形制約の下で最...
二次計画法(にじけいかくほう、英: quadratic programming, QP)は、数理最適化における非線形計画法の代表例の一つであり、いくつかの変数からなる二次関数を線形制約の下で最...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
f(x, y) = −(x² + y²) + 4 で与えられる放物面のグラフ。(0, 0, 4) での最大値が赤い点で示されている。数学の計算機科学やオペレーションズリサーチの分野における数理最適化(...
f(x, y) = −(x² + y²) + 4 で与えられる放物面のグラフ。(0, 0, 4) での最大値が赤い点で示されている。数学の計算機科学やオペレーションズリサーチの分野における数理最適化(...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...