「次数加群」を解説文に含む見出し語の検索結果(11~20/42件中)

代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/12 07:37 UTC 版)「環上の加群」の記事における「加群の種類」の解説有限生成加群 加群 M が有限生成あるい...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/05/23 13:44 UTC 版)「斉次座標環」の記事における「射影正規性」の解説その射影埋め込みにおける多様体 V は ...
数学において、アルティン・リースの補題(英: Artin–Rees lemma)は、ヒルベルトの基底定理のような結果とともに、ネーター環上の加群についての基本的な結果である。195...
数学において、アルティン・リースの補題(英: Artin–Rees lemma)は、ヒルベルトの基底定理のような結果とともに、ネーター環上の加群についての基本的な結果である。195...
数学において、アルティン・リースの補題(英: Artin–Rees lemma)は、ヒルベルトの基底定理のような結果とともに、ネーター環上の加群についての基本的な結果である。195...
数学において、アルティン・リースの補題(英: Artin–Rees lemma)は、ヒルベルトの基底定理のような結果とともに、ネーター環上の加群についての基本的な結果である。195...




カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS