「形式的ベキ級数」を解説文に含む見出し語の検索結果(11~20/32件中)
ロジャース=ラマヌジャン恒等式(ロジャース=ラマヌジャンこうとうしき、英: Rogers-Ramanujan identities)とは、q-級数の関係式[1][2...
ロジャース=ラマヌジャン恒等式(ロジャース=ラマヌジャンこうとうしき、英: Rogers-Ramanujan identities)とは、q-級数の関係式[1][2...
ロジャース=ラマヌジャン恒等式(ロジャース=ラマヌジャンこうとうしき、英: Rogers-Ramanujan identities)とは、q-級数の関係式[1][2...
数学における単項式(たんこうしき、英: monomial)とは、大ざっぱに言えばただひとつの項しかもたない多項式(整式)のことをいう。単項式は多項式(あるいは形式冪級数)の項として、一般の多項...
数学における単項式(たんこうしき、英: monomial)とは、大ざっぱに言えばただひとつの項しかもたない多項式(整式)のことをいう。単項式は多項式(あるいは形式冪級数)の項として、一般の多項...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...