「モーデル・ヴェイユの定理」を解説文に含む見出し語の検索結果(11~20/29件中)
数論において、モーデル予想(英: Mordell conjecture)とは、Mordell (1922) で提示された予想であり、有理数体 Q 上に定義された 1 よりも大きな種数を持つ曲線...
数論において、モーデル予想(英: Mordell conjecture)とは、Mordell (1922) で提示された予想であり、有理数体 Q 上に定義された 1 よりも大きな種数を持つ曲線...
数学において、ガロワコホモロジー (Galois cohomology) はガロワ加群の群コホモロジーの研究、つまり、ホモロジー代数学のガロワ群に対する加群への応用である。体拡大 L/K と結びついた...
数学において、ガロワコホモロジー (Galois cohomology) はガロワ加群の群コホモロジーの研究、つまり、ホモロジー代数学のガロワ群に対する加群への応用である。体拡大 L/K と結びついた...
数学において、ガロワコホモロジー (Galois cohomology) はガロワ加群の群コホモロジーの研究、つまり、ホモロジー代数学のガロワ群に対する加群への応用である。体拡大 L/K と結びついた...
数学において、ガロワコホモロジー (Galois cohomology) はガロワ加群の群コホモロジーの研究、つまり、ホモロジー代数学のガロワ群に対する加群への応用である。体拡大 L/K と結びついた...
数論において有理点(ゆうりてん、英: rational point)とは、各座標の値が全て有理数であるような空間の点のことである。例えば、点 (3, −67/4) は 3 も ...
数論において有理点(ゆうりてん、英: rational point)とは、各座標の値が全て有理数であるような空間の点のことである。例えば、点 (3, −67/4) は 3 も ...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...