「特別な R-加群として」を解説文に含む見出し語の検索結果(1~10/117件中)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/02/27 08:43 UTC 版)「結合多元環」の記事における「特別な R-加群として」の解説R-加群 A から始めるなら...
ナビゲーションに移動検索に移動可換環論において、Gorenstein 局所環 (Gorenstein local ring) はネーター可換局所環 R であって、R-加群として有限の移入次元をもつもの...
ナビゲーションに移動検索に移動可換環論において、Gorenstein 局所環 (Gorenstein local ring) はネーター可換局所環 R であって、R-加群として有限の移入次元をもつもの...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
数学、とくに加群論において、環 R と R-加群 M とその部分加群 N が与えられたとき、次の条件を満たすならば M は N の本質拡大(英: essential extension)(あるいは N...
数学、とくに加群論において、環 R と R-加群 M とその部分加群 N が与えられたとき、次の条件を満たすならば M は N の本質拡大(英: essential extension)(あるいは N...
< 前の結果 | 次の結果 >





カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS