「特別な R-加群として」を解説文に含む見出し語の検索結果(1~10/117件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/02/27 08:43 UTC 版)「結合多元環」の記事における「特別な R-加群として」の解説R-加群 A から始めるなら...
ナビゲーションに移動検索に移動可換環論において、Gorenstein 局所環 (Gorenstein local ring) はネーター可換局所環 R であって、R-加群として有限の移入次元をもつもの...
ナビゲーションに移動検索に移動可換環論において、Gorenstein 局所環 (Gorenstein local ring) はネーター可換局所環 R であって、R-加群として有限の移入次元をもつもの...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
数学、とくに加群論において、環 R と R-加群 M とその部分加群 N が与えられたとき、次の条件を満たすならば M は N の本質拡大(英: essential extension)(あるいは N...
数学、とくに加群論において、環 R と R-加群 M とその部分加群 N が与えられたとき、次の条件を満たすならば M は N の本質拡大(英: essential extension)(あるいは N...
< 前の結果 | 次の結果 >