「定義と特徴づけ」を解説文に含む見出し語の検索結果(1~8/8件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/09 19:21 UTC 版)「複素共役」の記事における「定義と特徴づけ」の解説複素数 z = a + bi(a, b...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。数学において、複素共役(複素共軛、ふくそきょうやく、英: complex conjugate)とは、複素数の虚部を...
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。数学において、複素共役(複素共軛、ふくそきょうやく、英: complex conjugate)とは、複素数の虚部を...
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。数学において、複素共役(複素共軛、ふくそきょうやく、英: complex conjugate)とは、複素数の虚部を...
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。数学において、複素共役(複素共軛、ふくそきょうやく、英: complex conjugate)とは、複素数の虚部を...
< 前の結果 | 次の結果 >