「作用素_(関数解析学)」を解説文に含む見出し語の検索結果(81~90/453件中)
作用素環論(さようそかんろん、英: theory of operator algebras)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義から...
作用素環論(さようそかんろん、英: theory of operator algebras)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義から...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
数学の関数解析学の分野における弱作用素位相(じゃくさようそいそう、英: weak operator topology; WOT)とは、ヒルベルト空間 H 上の有界作用素全体の成す集合上の位相で...
数学の関数解析学の分野における弱作用素位相(じゃくさようそいそう、英: weak operator topology; WOT)とは、ヒルベルト空間 H 上の有界作用素全体の成す集合上の位相で...
ナビゲーションに移動検索に移動数学の、特に関数解析学の分野における閉作用素(へいさようそ、英語: closed operator)は、バナッハ空間上の線形作用素のある重要な類である。有界作用素...
ナビゲーションに移動検索に移動数学の、特に関数解析学の分野における閉作用素(へいさようそ、英語: closed operator)は、バナッハ空間上の線形作用素のある重要な類である。有界作用素...
関数解析学における F-空間(Fくうかん、英語: F-space)とは、実あるいは複素ベクトル空間であって、次を満たすような距離 d: V × V → R の定められているもののことを言う: 以下 K...