「有界線型作用素」を解説文に含む見出し語の検索結果(71~80/172件中)
ナビゲーションに移動検索に移動数学の特に函数解析学において、ヒルベルト空間上の各有界線型作用素は、対応する随伴作用素(ずいはんさようそ、英: adjoint operator)を持つ。作用素の...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。出典検索?: "フェンシェルの双対性定理" – ニュ...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。出典検索?: "フェンシェルの双対性定理" – ニュ...
作用素環論(さようそかんろん、英: theory of operator algebras)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義から...
作用素環論(さようそかんろん、英: theory of operator algebras)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義から...
作用素環論(さようそかんろん、英: theory of operator algebras)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義から...
作用素環論(さようそかんろん、英: theory of operator algebras)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義から...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...
.mw-parser-output .pathnavbox{clear:both;border:1px outset #eef;padding:0.3em 0.6em;margin:0 0 0.5em...