「最小多項式_(線型代数学)」を解説文に含む見出し語の検索結果(61~70/437件中)
ナビゲーションに移動検索に移動線形代数学において、体 F の元を成分とする正方行列 A の有理標準形(ゆうりひょうじゅんけい、英: rational (canonical) form)あるいは...
ナビゲーションに移動検索に移動線形代数学において、体 F の元を成分とする正方行列 A の有理標準形(ゆうりひょうじゅんけい、英: rational (canonical) form)あるいは...
ナビゲーションに移動検索に移動線形代数学において、体 F の元を成分とする正方行列 A の有理標準形(ゆうりひょうじゅんけい、英: rational (canonical) form)あるいは...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を記述する...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を記述する...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を記述する...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を記述する...
a の b への射影 a1 と a の b からの反射影 a2.成す角が π/2 < θ ≤ π のときは、射影ベクトル a1 は b に対して反対の方向を持つ。線型代数学における空間ベクトル a の...
a の b への射影 a1 と a の b からの反射影 a2.成す角が π/2 < θ ≤ π のときは、射影ベクトル a1 は b に対して反対の方向を持つ。線型代数学における空間ベクトル a の...
a の b への射影 a1 と a の b からの反射影 a2.成す角が π/2 < θ ≤ π のときは、射影ベクトル a1 は b に対して反対の方向を持つ。線型代数学における空間ベクトル a の...