「核_(線型代数学)」を解説文に含む見出し語の検索結果(41~50/595件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/04 03:13 UTC 版)「数値線形代数」の記事における「科学研究費助成事業」の解説数値線形代数における高精度計算...
ナビゲーションに移動検索に移動数学の分野において、実あるいは複素ベクトル空間内の集合 C が凸かつ均衡であるとき、その集合は絶対凸(ぜったいとつ、英: absolutely convex)と呼...
ナビゲーションに移動検索に移動数学の分野において、実あるいは複素ベクトル空間内の集合 C が凸かつ均衡であるとき、その集合は絶対凸(ぜったいとつ、英: absolutely convex)と呼...
ナビゲーションに移動検索に移動数学の分野において、実あるいは複素ベクトル空間内の集合 C が凸かつ均衡であるとき、その集合は絶対凸(ぜったいとつ、英: absolutely convex)と呼...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 08:02 UTC 版)「次元 (ベクトル空間)」の記事における「トレースによる特徴づけ」の解説「跡 (線型代数...