「拡大次数」を解説文に含む見出し語の検索結果(41~50/106件中)

Jump to navigationJump to search体論において、可換体 K の拡大体 L の元は、K 係数の 0 でない多項式 が存在してその根となっているときに、K 上代数的であると言...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/27 05:41 UTC 版)「絶対値」の記事における「体の賦値」の解説詳細は「賦値」および「絶対賦値(英語版)」を参...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/11 09:25 UTC 版)「付値体」の記事における「順分岐拡大」の解説この項では、K の | ⋅ |...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...
数学において、アルティン・シュライアー理論 (Artin–Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。ア...




カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS