「最小多項式_(線型代数学)」を解説文に含む見出し語の検索結果(351~360/442件中)
内積を用いたベクトルの成す角の定義の幾何学的解釈線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、英: metric vector space)は、内積と呼ばれる付加的な構造を備...
内積を用いたベクトルの成す角の定義の幾何学的解釈線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、英: metric vector space)は、内積と呼ばれる付加的な構造を備...
内積を用いたベクトルの成す角の定義の幾何学的解釈線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、英: metric vector space)は、内積と呼ばれる付加的な構造を備...
数学において、GMRES法(GMRESほう、generalized minimal residual method)は、連立一次方程式の数値解を求めるための反復法の一種である[1]。残...
数学において、GMRES法(GMRESほう、generalized minimal residual method)は、連立一次方程式の数値解を求めるための反復法の一種である[1]。残...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...