「Module:Math」を解説文に含む見出し語の検索結果(31~40/271件中)
抽象代数学において、加群は、任意の2つの0でない部分加群の共通部分が0でないときにユニフォーム加群 (uniform module) と呼ばれる。このことは M のすべての0でない部分加群が本質部分加...
抽象代数学において、加群は、任意の2つの0でない部分加群の共通部分が0でないときにユニフォーム加群 (uniform module) と呼ばれる。このことは M のすべての0でない部分加群が本質部分加...
抽象代数学、とくに加群論において、加群の稠密部分加群(ちゅうみつぶぶんかぐん、英: dense submodule)は本質部分加群の概念の精密化である。N が M の稠密部分加群であれば、"N...
抽象代数学、とくに加群論において、加群の稠密部分加群(ちゅうみつぶぶんかぐん、英: dense submodule)は本質部分加群の概念の精密化である。N が M の稠密部分加群であれば、"N...
抽象代数学、とくに加群論において、加群の稠密部分加群(ちゅうみつぶぶんかぐん、英: dense submodule)は本質部分加群の概念の精密化である。N が M の稠密部分加群であれば、"N...
Jump to navigationJump to searchこの記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追...
Jump to navigationJump to searchこの記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追...
Jump to navigationJump to searchこの記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追...
Jump to navigationJump to searchこの記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追...
Jump to navigationJump to searchこの記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追...