「逆行列の計算」を解説文に含む見出し語の検索結果(31~40/53件中)
イライアキム・ムーア(1862–1932) ロジャー・ペンローズ(1931–)数学、特に線形代数において、行列 A {\displaystyle A} のムーア・ペンローズ逆行列(英: Moo...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
数学の線型代数学において、行列 A の小行列式(しょうぎょうれつしき、英: minor, minor determinant)とは、A から1列以上の行または列を除いて得られる小さい正方行列の...
数学の線型代数学において、行列 A の小行列式(しょうぎょうれつしき、英: minor, minor determinant)とは、A から1列以上の行または列を除いて得られる小さい正方行列の...
数学の線型代数学において、行列 A の小行列式(しょうぎょうれつしき、英: minor, minor determinant)とは、A から1列以上の行または列を除いて得られる小さい正方行列の...
数学の線型代数学において、行列 A の小行列式(しょうぎょうれつしき、英: minor, minor determinant)とは、A から1列以上の行または列を除いて得られる小さい正方行列の...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...