「ITにおける「任意」」を解説文に含む見出し語の検索結果(211~220/411件中)
数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃...
数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃...
数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃...
数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃...
数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃...
数学において、アーベル群 A のランク (rank)、階数、プリューファーランク (Prüfer rank)、あるいは捩れなしランク (torsion-free rank) は極大線型独立部分集合の濃...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
オーレの定理の条件を満たし、ハミルトン閉路を持つグラフ。図の中央には次数が n/2 未満の頂点が2個存在するため、このグラフはディラックの定理の条件は満たさない。しかしこの2頂点は隣接しており、またこ...
数学において、シューアの補題(シューアのほだい、英: Schur's lemma)[1]とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シュー...