「構成主義_(数学)」を解説文に含む見出し語の検索結果(191~200/863件中)
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
量化(りょうか、英: Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。概要例えば、算術において、「全ての自...
量化(りょうか、英: Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。概要例えば、算術において、「全ての自...
量化(りょうか、英: Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。概要例えば、算術において、「全ての自...
量化(りょうか、英: Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。概要例えば、算術において、「全ての自...