「生成 (線型代数学)」を解説文に含む見出し語の検索結果(181~190/332件中)
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn...
数学における交換子(こうかんし、英: commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特...
数学における交換子(こうかんし、英: commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特...
数学における交換子(こうかんし、英: commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特...
数学における交換子(こうかんし、英: commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特...
初等代数学における相反多項式(そうはんたこうしき、英: reciprocal polynomial)または反転多項式(はんてんたこうしき、英: reflected polynomial...
初等代数学における相反多項式(そうはんたこうしき、英: reciprocal polynomial)または反転多項式(はんてんたこうしき、英: reflected polynomial...
初等代数学における相反多項式(そうはんたこうしき、英: reciprocal polynomial)または反転多項式(はんてんたこうしき、英: reflected polynomial...
初等代数学における相反多項式(そうはんたこうしき、英: reciprocal polynomial)または反転多項式(はんてんたこうしき、英: reflected polynomial...