「最小二乗法」を解説文に含む見出し語の検索結果(101~110/623件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/07/28 08:49 UTC 版)「見せかけの回帰」の記事における「数式での表現」の解説見せかけの回帰は以下のようにして数...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...
ある系列の数値を、より大きな規則性を示す他の系列によって置き換えることが望ましい場合がある。この過程は補整 1として知られ、一般的には、時系列やあるいは申告年齢別人口分布のような別種類の系列で観察され...