「計算法則」を解説文に含む見出し語の検索結果(11~20/43件中)
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。数学において、複素共役(複素共軛、ふくそきょうやく、英: complex conjugate)とは、複素数の虚部を...
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。数学において、複素共役(複素共軛、ふくそきょうやく、英: complex conjugate)とは、複素数の虚部を...
平均は同じであるが標準偏差が大きく異なるデータのヒストグラムの例。赤で示されたデータの方が青で示されたデータよりも標準偏差が小さい。平均 0, 標準偏差 σ の正規分布の確率密度関数。この分布に従う確...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
aの平方根(へいほうこん、英: square root)とは、数に対して平方するとaになる数のことである。概要複素数の平方根は、代数学の基本定理より、0 を除いて2個だけ存在する。 特に実数の...