「代数的定義」を解説文に含む見出し語の検索結果(11~20/30件中)
複素平面内のクラインの j-不変量数学では複素変数 τ の函数であるフェリックス・クラインの j-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された ...
複素平面内のクラインの j-不変量数学では複素変数 τ の函数であるフェリックス・クラインの j-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された ...
複素平面内のクラインの j-不変量数学では複素変数 τ の函数であるフェリックス・クラインの j-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された ...
複素平面内のクラインの j-不変量数学では複素変数 τ の函数であるフェリックス・クラインの j-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された ...
複素平面内のクラインの j-不変量数学では複素変数 τ の函数であるフェリックス・クラインの j-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された ...
複素平面内のクラインの j-不変量数学では複素変数 τ の函数であるフェリックス・クラインの j-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された ...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
数学におけるスキーム(あるいは概型) (英: scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の...
数学におけるスキーム(あるいは概型) (英: scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の...