「トレース_(線型代数学)」を解説文に含む見出し語の検索結果(11~20/162件中)
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2013年8月)数学の線型代数学における双対基底の概念は、体のトレースを用いるこ...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2013年8月)数学の線型代数学における双対基底の概念は、体のトレースを用いるこ...
線型代数学におけるベクトル空間の間の線型写像の転置(てんち、英: transpose)は、各ベクトル空間の双対空間の間に誘導される。そのような転置写像 (transpose of a linear m...
線型代数学におけるベクトル空間の間の線型写像の転置(てんち、英: transpose)は、各ベクトル空間の双対空間の間に誘導される。そのような転置写像 (transpose of a linear m...
線型代数学におけるベクトル空間の間の線型写像の転置(てんち、英: transpose)は、各ベクトル空間の双対空間の間に誘導される。そのような転置写像 (transpose of a linear m...
Jump to navigationJump to searchこの記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年12月...
Jump to navigationJump to searchこの記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年12月...
Jump to navigationJump to searchこの記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年12月...
数学の線型代数学において、正方行列の跡(せき、英: trace; トレース、独: Spur; シュプール)あるいは対角和(たいかくわ)とは、主対角成分の総和である。つまり tr ...
数学の線型代数学において、正方行列の跡(せき、英: trace; トレース、独: Spur; シュプール)あるいは対角和(たいかくわ)とは、主対角成分の総和である。つまり tr ...