「コーシーの函数方程式」を解説文に含む見出し語の検索結果(11~20/50件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/03 17:26 UTC 版)「底に関する指数函数」の記事における「代数的性質による」の解説詳細は「コーシーの函数方程...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...
数学において、線型写像は線型空間の「単に」代数構造を保つ写像の重要なクラスを成し、またより一般の写像を近似するのにも用いられる(一次近似)。空間に位相も入れて(つまり、位相線型空間を)考えるならば、全...