「ウェダーバーンの小定理」を解説文に含む見出し語の検索結果(11~20/40件中)
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b...
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。目次1...
有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者である...
有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者である...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...