「極形式の表示と記法」を解説文に含む見出し語の検索結果(1~7/7件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/21 13:52 UTC 版)「複素数」の記事における「極形式の表示と記法」の解説複素数 z = x + yi(x, ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i ...
< 前の結果 | 次の結果 >