「曲線への応用」を解説文に含む見出し語の検索結果(1~7/7件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2014/11/03 08:50 UTC 版)「随伴公式 (代数幾何学)」の記事における「曲線への応用」の解説平面曲線の種数次数公式(...
数学、特に代数幾何学や複素多様体論では、随伴公式(adjunction formula)は多様体の標準バンドルとその多様体の内側の超曲面を関係付ける。射影多様体のようなうまく振る舞いの定義できる空間の...
数学、特に代数幾何学や複素多様体論では、随伴公式(adjunction formula)は多様体の標準バンドルとその多様体の内側の超曲面を関係付ける。射影多様体のようなうまく振る舞いの定義できる空間の...
ナビゲーションに移動検索に移動ハフ変換(ハフへんかん、Hough変換)は、デジタル画像処理で用いられる特徴抽出法の一つである。古典的には直線の検出を行うものだったが、更に一般化されて様々な形態に対して...
ナビゲーションに移動検索に移動ハフ変換(ハフへんかん、Hough変換)は、デジタル画像処理で用いられる特徴抽出法の一つである。古典的には直線の検出を行うものだったが、更に一般化されて様々な形態に対して...
アンドリュー・ワイルズワイルズによるフェルマーの最終定理の証明(ワイルズによるフェルマーのさいしゅうていりのしょうめい)は、イギリスの数学者であるアンドリュー・ワイルズによってなされた、楕円曲線に関す...
アンドリュー・ワイルズワイルズによるフェルマーの最終定理の証明(ワイルズによるフェルマーのさいしゅうていりのしょうめい)は、イギリスの数学者であるアンドリュー・ワイルズによってなされた、楕円曲線に関す...
< 前の結果 | 次の結果 >