「交叉重複度」を解説文に含む見出し語の検索結果(1~10/19件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/06 16:07 UTC 版)「重複度 (数学)」の記事における「交叉重複度」の解説詳細は「交叉理論」を参照 代数幾何...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/10 06:44 UTC 版)「ベズーの定理」の記事における「交叉数」の解説ベズーの定理やその多次元化において、最も繊...
数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、英: multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点にお...
数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、英: multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点にお...
数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、英: multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点にお...
数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、英: multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点にお...
数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、英: multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点にお...
数学において、多重集合の元の重複度(ちょうふくど、じゅうふくど、英: multiplicity)は、それがその多重集合において現れる回数である。例えば、与えられた多項式方程式が与えられた点にお...
ナビゲーションに移動検索に移動 2つの三次曲線は9つの点で交わるベズーの定理(ベズーのていり、Bézout's theorem)は、2つの平面代数曲線の交点の個数に関する、代数幾何学における定理である...
楕円曲線は種数 1 の滑らかな射影曲線である。代数幾何学において、代数閉体 k 上の射影多様体(しゃえいたようたい、英: projective variety)とは、k 上の(n 次元)射影空...
< 前の結果 | 次の結果 >