「カッツ・ムーディ・リー環のルート空間分解」を解説文に含む見出し語の検索結果(1~9/9件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/24 00:04 UTC 版)「カッツ・ムーディ代数」の記事における「カッツ・ムーディ・リー環のルート空間分解」の解説...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に...
< 前の結果 | 次の結果 >