「しゅうきかんすう」を解説文に含む見出し語の検索結果(1~10/19件中)
読み方:しゅうきかんすう周期的に変動する関数。関数f(x)のうちで、すべてのxに対してf(x+k)=f(x)となる正の定数kがあるとき、f(x)を、kを周期とする周期関数であるという。三角関数など。
読み方:しゅうきかんすう周期的に変動する関数。関数f(x)のうちで、すべてのxに対してf(x+k)=f(x)となる正の定数kがあるとき、f(x)を、kを周期とする周期関数であるという。三角関数など。
読み方:しゅうきかんすう周期的に変動する関数。関数f(x)のうちで、すべてのxに対してf(x+k)=f(x)となる正の定数kがあるとき、f(x)を、kを周期とする周期関数であるという。三角関数など。
読み方:しゅうきかんすう周期的に変動する関数。関数f(x)のうちで、すべてのxに対してf(x+k)=f(x)となる正の定数kがあるとき、f(x)を、kを周期とする周期関数であるという。三角関数など。
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/06/29 13:24 UTC 版)「周期関数」の記事における「反周期関数」の解説周期関数の一般化の一つに反周期関数(はんし...
数学における準周期函数(じゅんしゅうきかんすう、英: quasiperiodic function)は、周期函数と似ているが、厳密な定義は異なる函数である。より正確に言うと、函数 f {\displa...
数学における準周期函数(じゅんしゅうきかんすう、英: quasiperiodic function)は、周期函数と似ているが、厳密な定義は異なる函数である。より正確に言うと、函数 f {\displa...
数学における準周期函数(じゅんしゅうきかんすう、英: quasiperiodic function)は、周期函数と似ているが、厳密な定義は異なる函数である。より正確に言うと、函数 f {\displa...
数学における周期関数(しゅうきかんすう、英: periodic function)は、一定の間隔あるいは周期ごとに取る値が繰り返す関数を言う。最も重要な例として、2π ラジアンの間隔...
数学における周期関数(しゅうきかんすう、英: periodic function)は、一定の間隔あるいは周期ごとに取る値が繰り返す関数を言う。最も重要な例として、2π ラジアンの間隔...
< 前の結果 | 次の結果 >