真正紅藻綱とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 真正紅藻綱の意味・解説 

真正紅藻綱

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/01 20:36 UTC 版)

真正紅藻綱(しんせいこうそうこう、学名: Florideophyceae)は、紅藻の中で最大のであり、およそ6,800種が知られる[2]。接合子(受精卵)が配偶体上で発生し、果胞子体とよばれる特異な複相世代を形成する。そのため、配偶体、果胞子体、四分胞子体からなる3世代交代を行う。すべて多細胞性であり(図1)、多くは沿岸岩礁域に生育しているが(海藻の中で最も種数が多い)、一部は淡水生(カワモズク、オキチモズクなど)。テングサ類やオゴノリ類、キリンサイ類、フノリ類、トサカノリなど食材や粘質多糖(寒天カラギーナン)の原料として身近な海藻を含む。


  1. ^ a b 和名は「鈴木 雅大 (2019) 紅藻類. 日本産海藻リスト. 生きもの好きの語る自然誌.」より。
  2. ^ a b c d Guiry, M.D. & Guiry, G.M. (2019) AlgaeBase. World-wide electronic publication, Nat. Univ. Ireland, Galway. http://www.algaebase.org; searched on 16 Septmber 2019.
  3. ^ a b c d e f g h i j 千原光雄 (1997). 藻類多様性の生物学. 内田老鶴圃. pp. 386. ISBN 978-4753640607 
  4. ^ a b c d e f g h i j k l m 吉﨑誠・神谷允伸 (1999). “紅色植物門”. In 千原光雄. バイオディバーシティ・シリーズ (3) 藻類の多様性と系統. 裳華房. pp. 177–189. ISBN 978-4785358266 
  5. ^ a b c d e f g h i j k 神谷充伸・長里千香子・川井浩史 (2012). “紅藻類”. In 渡邉信. 藻類ハンドブック. エヌ・ティー・エス. pp. 113-122. ISBN 978-4864690027 
  6. ^ a b c d e f g h i van den Hoek, C., Mann, D., Jahns, H. M. & Jahns, M. (1995). Algae: an introduction to phycology. Cambridge University Press. ISBN 978-0521316873 
  7. ^ a b c d e f g h i j k Graham, J.E., Wilcox, L.W. & Graham, L.E. (2008). Algae. Benjamin Cummings. ISBN 978-0321559654 
  8. ^ a b Kamiya, M., Lindstrom, S. C., Nakayama, T., Yokoyama, A., Lin, S. M., Guiry, M. D., ... & Cho, T. O. (2017). Syllabus of plant families ‐ A. Engler's Syllabus der Pflanzenfamilien Part 2/2: Photoautotrophic eukaryotic algae ‐ Rhodophyta. Borntraeger Science Publishers, Berlin. pp. 171. ISBN 978-3-443-01094-2. 
  9. ^ 吉田忠生 (1998). 新日本海藻誌 日本海藻類総覧. 内田老鶴圃. pp. 1222. ISBN 978-4753640492 
  10. ^ 千原光雄 (1983). 学研生物図鑑 海藻. 学習研究社. pp. 292. ISBN 978-4051004019 
  11. ^ 田中次郎 & 中村庸夫 (2004). 日本の海藻. 平凡社. pp. 245. ISBN 978-4582542370 
  12. ^ a b c 神谷充伸 (監) (2012). 海藻 ― 日本で見られる388種の生態写真+おしば標本. 誠文堂新光社. pp. 271. ISBN 978-4416812006 
  13. ^ Lee, R.E. (2008). Phycology, 4th edition. Cambridge University Press. ISBN 978-0-521-63883-8 
  14. ^ Watson, B. A. & Waaland, S. D. (1986). “Further biochemical characterization of a cell fusion hormone from the red alga, Griffithsia pacifica”. Plant and Cell Physiology 27: 1043-1050. doi:10.1093/oxfordjournals.pcp.a077187. 
  15. ^ Kim, G. H., Lee, I. K. & Fritz, L. (1995). “The wound‐healing responses of Antithamnion nipponicum and Griffithsia pacifica (Ceramiales, Rhodophyta) monitored by lectins”. Phycological Research 43: 161-166. doi:10.1111/j.1440-1835.1995.tb00020.x. 
  16. ^ Pueschel, C. M. & Cole, K. M. (1982). “Rhodophycean pit plugs: an ultrastructural survey with taxonomic implications”. American Journal of Botany 69: 703-720. doi:10.1002/j.1537-2197.1982.tb13310.x. 
  17. ^ a b c d e f g h i Cole, K. M. & Sheath, R. G. (Eds.) (1990). “Biology of the Red Algae”. Cambridge University Press. pp. 517. ISBN 0-521-34301-1 
  18. ^ Dawes, C. J., Scott, F. M. & Bowler, E. (1961). “A light‐and electron‐microscopic survey of algal cell walls. I. Phaeophyta and Rhodophyta”. American Journal of Botany 48: 925-934. doi:10.1002/j.1537-2197.1961.tb11732.x. 
  19. ^ Craigie, J. S., Correa, J. A. & Gordon, M. E. (1992). “Cuticles from Chondrus crispus (Rhodophyta)”. Journal of Phycology 28: 777-786. doi:10.1111/j.0022-3646.1992.00777.x. 
  20. ^ Gerwick, W. H. & Lang, N. J. (1977). “Structural, chemical and ecological studies of iridescence in Iridaea (Rhodophyta)”. J. Phycol. 13: 121–127. doi:10.1111/j.1529-8817.1977.tb02898.x. 
  21. ^ 神谷充伸 (監) (2012). 海藻 ― 日本で見られる388種の生態写真+おしば標本. 誠文堂新光社. pp. 166, 176, 180, 222, 223. ISBN 978-4416812006 
  22. ^ Takaichi, S., Yokoyama, A., Mochimaru, M., Uchida, H. & Murakami, A. (2016). “Carotenogenesis diversification in phylogenetic lineages of Rhodophyta”. Journal of Phycology 52: 329-338. doi:10.1111/jpy.12411. 
  23. ^ Shimonaga, T., Konishi, M., Oyama, Y., Fujiwara, S., Satoh, A., Fujita, N., Colleoni, C., Buléon, A., Putaux, J., Ball, S.G., Yokoyama, A., Hara, Y., Nakamura, Y. & Tsuzuki, M. (2008). “Variation in storage α-glucans of the Porphyridiales (Rhodophyta)”. Plant and Cell Physiology 49: 103-116. doi:10.1093/pcp/pcm172. 
  24. ^ Eggert, A. & Karsten, U. (2010). “Low molecular weight carbohydrates in red algae - an ecophysiological and biochemical perspective”. Red Algae in the Genomic Age. Springer Netherlands. pp. 443-456. ISBN 978-90-481-3794-7. 
  25. ^ Kamiya, M. & Kawai, H. (2002). “Dependence of the carposporophyte on the maternal gametophyte in three ceramiacean algae (Rhodophyta), with respect to carposporophyte development, spore production and germination success”. Phycologia 41: 107-115. doi:10.2216/i0031-8884-41-2-107.1. 
  26. ^ Wilce, R.T. & Sears, J.R. (1991). “Schmitzia sanctae-crucis, new species (Calosiphoniaceae, Rhodophyta) and a novel nutritive development to aid in zygote nucleus amplification”. Phycologia 30: 151–169. doi:10.2216/i0031-8884-30-2-151.1. 
  27. ^ Kamiya, M. & West, J. A. (2010). “Investigations on reproductive affinities in red algae”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer, Netherlands. pp. 77-109. ISBN 978-90-481-3794-7 
  28. ^ Goff, L. J. & Coleman, A. W. (1990). “DNA: Microspectrofluorometric studies”. Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 43-72. ISBN 0-521-34301-1 
  29. ^ Kain, J. M. & Norton, T. A. (1990). “Marine ecology”. In Cole, K. M. & Sheath, R. G. (Eds.). Biology of the Red Algae. Cambridge University Press. pp. 377-422. ISBN 0-521-34301-1 
  30. ^ Gonzalez, M. & Goff, L. (1989). “The red algal epiphytes Microcladia coulteri and M. californica (Rhodophyceae, Ceramiaceae). II: Basiphyte specificity”. Journal of Phycology 25: 558-567. doi:10.1111/j.1529-8817.1989.tb00262.x. 
  31. ^ Serio, D., Catra, M., Collodoro, D. & Nisi, A. (2011). “Ceramium cormacii sp. nov.(Ceramiaceae, Rhodophyta), a new Mediterranean species epizoic on loggerhead sea turtles (Caretta caretta)”. Botanica Marina 54: 545-550. doi:10.1515/BOT.2011.068. 
  32. ^ Koletić, N., Rimac, A., Alegro, A., Lajtner, J., Vuković, N. & Šegota, V. (2019). “Dynamics of epizoic populations of Thorea hispida (Thore) Desvaux (Thoreaceae, Rhodophyta) on aquatic gastropods in the carbonate stream in Croatia”. Nova Hedwigia 109 (1/2): 1-15. doi:10.1127/nova_hedwigia/2019/0546. 
  33. ^ 松田伸也 (2002). “日本のサンゴ礁域における無節サンゴモ研究”. 日本におけるサンゴ礁研究 1: 29-42. 
  34. ^ 藤田大介 (2002). “磯焼け”. In 堀輝三・大野正夫・堀口健雄. 21世紀初頭の藻学の現況. pp. 102-105 
  35. ^ 松田伸也・富山卓子 (1988). “琉球列島の島棚上にみられる現生サンゴモ球に関する一考察”. 琉球大学教育学部紀要 3: 343-354. NAID 10016457409. 
  36. ^ Foster, M. S. (2001). “Rhodoliths: between rocks and soft places”. Journal of Phycology 37: 659-667. doi:10.1046/j.1529-8817.2001.00195.x. 
  37. ^ Amado-Filho, G. M., Moura, R. L., Bastos, A. C., Salgado, L. T., Sumida, P. Y., Guth, A. Z., ... & Bahia, R. G. (2012). “Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic”. PloS One 7: e35171. doi:10.1371/journal.pone.0035171. 
  38. ^ Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. (1986). “Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity”. Deep Sea Research Part A. Oceanographic Research Papers 33: 881-892. doi:10.1016/0198-0149(86)90003-8. 
  39. ^ 鈴木 稔・沖野 龍文 (2002) アレロパシー現象 (pdf). 21世紀初頭の藻学の現況.
  40. ^ Hay, M. E. & Fenical, W. (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Annual Review of Ecology and Systematics 19: 111-145. https://doi.org/10.1146/annurev.es.19.110188.000551
  41. ^ 環境省 レッドリスト. 2019.9.22閲覧.
  42. ^ Goff, L. J. (1982). “The biology of parasitic red algae”. In Round F, Chapman D, (eds.). Progress in Phycological Research Vol. 1. Elsevier Biomedical Press, Amsterdam. pp. 289–369 
  43. ^ Goff, L. J., Moon, D. A., Nyvall, P., Stache, B., Mangin, K. & Zuccarello, G. (1996). “The evolution of parasitism in the red algae: molecular comparisons of adelphoparasites and their hosts”. Journal of Phycology 32: 297–312. doi:10.1111/j.0022-3646.1996.00297.x. 
  44. ^ Blouin, N.A. & Lane, C.E. (2012). “Red algal parasites: models for a life history evolution that leaves photosynthesis behind again and again”. BioEssays 34: 226-235. doi:10.1002/bies.201100139. 
  45. ^ Goff, L. J. & Coleman, A. W. (1987). “Nuclear transfer from parasite to host: a new regulatory mechanism of parasitism”. Ann. NY Acad. Sci. 503: 402–423. doi:10.1111/j.1749-6632.1987.tb40626.x. 
  46. ^ Goff, L. J. & Zuccarello, G. (1994). “The evolution of parasitism in red algae: cellular interactions of adelphoparasites and their hosts”. Journal of Phycology 30: 695-720. doi:10.1111/j.0022-3646.1994.00695.x. 
  47. ^ a b c 渡邉信 (監) (2012). 藻類ハンドブック. エヌ・ティー・エス. pp. 617–641. ISBN 978-4864690027 
  48. ^ a b c 埋橋祐二 (2012). “寒天”. In 渡邉信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 742-748. ISBN 978-4864690027 
  49. ^ 大野正夫 (2002). “新しい海藻養殖”. 21世紀初頭の藻学の現況 
  50. ^ a b c 岩本浩二 & 白岩善博 (2012). “カラゲナン”. In 渡邉信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 749-753. ISBN 978-4864690027 
  51. ^ 宮下 章 (1974). “フノリの効用”. 海藻. 法政大学出版局. pp. 222–224. ISBN 978-4-588-20111-0 
  52. ^ 宮下章 (1974). “糊用”. 海藻. 法政大学出版局. pp. 236–239. ISBN 978-4-588-20111-0 
  53. ^ 高橋満・佐伯洋二・藤本桂司・松崎久雄・見明康雄・柳沢孝彰 (2001). “実験的初期齲蝕病巣におけるフノリ抽出物と第2リン酸カルシウムを配合したキシリトール粒ガムの再石灰化促進効果の in vivo 評価”. 歯科学報 101: 1033-1042. https://hdl.handle.net/10130/541. 
  54. ^ 西澤 一俊 & 大野 正夫 (2004). “海藻由来の水溶性食物繊維の化学構造と薬理学的機能”. 日本食物繊維学会誌 8 (1): 1-12. doi:10.11217/jjdf2004.8.1. 
  55. ^ 舘脇正和 (2014). “私の海藻食論 My Sea-vegetarianism”. 黒潮圏科学 7 (2): 133−174. 
  56. ^ 大野正夫 (2002). “海藻肥料”. In 堀輝三・大野正夫・堀口健雄 (編). 21世紀初頭の藻学の現況. pp. 128-131 
  57. ^ a b 大船泰史 (2012). “カイニン酸、ドウモイ酸”. In 渡邉信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 684–687. ISBN 978-4864690027 
  58. ^ 鈴木雅大 (2010年). “原始紅藻綱は6綱に分けられた”. 生きもの好きの語る自然誌. 2022年1月20日閲覧。
  59. ^ a b Saunders, G.W. & Hommersand, M.H. (2004) Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J. Bot. 91: 1494-1507. https://doi.org/10.3732/ajb.91.10.1494
  60. ^ Muñoz-Gómez, S. A., Mejía-Franco, F. G., Durnin, K., Colp, M., Grisdale, C. J., Archibald, J. M. & Slamovits, C. H. (2017). “The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known”. Current Biology 27: 1677-1684. doi:10.1016/j.cub.2017.04.054. 
  61. ^ a b Qiu, H., Yoon, H. S. & Bhattacharya, D. (2016). “Red algal phylogenomics provides a robust framework for inferring evolution of key metabolic pathways”. PLoS Currents 8. doi:10.1371/currents.tol.7b037376e6d84a1be34af756a4d90846. 
  62. ^ 鈴木雅大 (2014). “激変する真正紅藻綱の分類”. 藻類 62 (3): 166-171. NAID 40020276073. 
  63. ^ a b Le Gall, L. & Saunders, G. W. (2007). “A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae”. Molecular Phylogenetics and Evolution 43: 1118-1130. doi:10.1016/j.ympev.2006.11.012. 
  64. ^ Yang, E. C., Kim, K. M., Kim, S. Y., Lee, J., Boo, G. H., Lee, J. H., ... & Boo, S. M. (2015). “Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae”. Genome Biology and Evolution 7: 2394-2406. doi:10.1093/gbe/evv147. 
  65. ^ 鈴木雅大 (2020年8月24日). “紅藻植物門 Phylum Rhodophyta”. 写真で見る生物の系統と分類. 生きもの好きの語る自然誌. 2022年1月10日閲覧。
  66. ^ 鈴木雅大 (2021年10月2日). “紅藻類”. 日本産海藻リスト. 生きもの好きの語る自然誌. 2022年1月13日閲覧。


「真正紅藻綱」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「真正紅藻綱」の関連用語

真正紅藻綱のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



真正紅藻綱のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの真正紅藻綱 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS