「存在と一意性」を解説文に含む見出し語の検索結果(91~100/156件中)
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
イライアキム・ムーア(1862–1932) ロジャー・ペンローズ(1931–)数学、特に線形代数において、行列 A {\displaystyle A} のムーア・ペンローズ逆行列(英: Moo...
イライアキム・ムーア(1862–1932) ロジャー・ペンローズ(1931–)数学、特に線形代数において、行列 A {\displaystyle A} のムーア・ペンローズ逆行列(英: Moo...
解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプ...
解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプ...
解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプ...
解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプ...
振り子の運動は、位置真下かつ速度零 (0, 0) の状態と、位置真上かつ速度零 (π, 0) の状態という、2つの平衡点を持つ[1]。微分方程式における平衡点(へいこうてん)...