「恒等作用素」を解説文に含む見出し語の検索結果(71~80/119件中)
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の...
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の...
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の...
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の...
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の...
数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、英: unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...
数学における、ベクトル空間の次元(じげん、英: dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数である。 他の種類の次元(たとえばヒルベルト次元)との区別のため、ハ...