「取り尽くし法」を解説文に含む見出し語の検索結果(51~60/84件中)
単位円に外接する正 n 角形の周長によって与えられる数列は円周長に等しい極限すなわち極限 2πr を持つ。内接する多角形に対応する数列も同じ極限を持つ。nn sin .mw-parser-o...
単位円に外接する正 n 角形の周長によって与えられる数列は円周長に等しい極限すなわち極限 2πr を持つ。内接する多角形に対応する数列も同じ極限を持つ。nn sin .mw-parser-o...
単位円に外接する正 n 角形の周長によって与えられる数列は円周長に等しい極限すなわち極限 2πr を持つ。内接する多角形に対応する数列も同じ極限を持つ。nn sin .mw-parser-o...
単位円に外接する正 n 角形の周長によって与えられる数列は円周長に等しい極限すなわち極限 2πr を持つ。内接する多角形に対応する数列も同じ極限を持つ。nn sin .mw-parser-o...
単位円に外接する正 n 角形の周長によって与えられる数列は円周長に等しい極限すなわち極限 2πr を持つ。内接する多角形に対応する数列も同じ極限を持つ。nn sin .mw-parser-o...
数学における無限小(むげんしょう、英: infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さくな...
数学における無限小(むげんしょう、英: infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さくな...
数学における無限小(むげんしょう、英: infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さくな...
本項目は、純粋数学と応用数学の歴史に関する年表である。「数学史」も参照年表先史時代紀元前10世紀以前紀元前70,000年頃 — 南アフリカ人が、黄土岩に刻み跡をつけることにより幾何学的パターンで装飾す...
本項目は、純粋数学と応用数学の歴史に関する年表である。「数学史」も参照年表先史時代紀元前10世紀以前紀元前70,000年頃 — 南アフリカ人が、黄土岩に刻み跡をつけることにより幾何学的パターンで装飾す...