Weblio 辞書 > 辞書・百科事典 > ペロン=フロベニウスの定理の解説 > ペロン=フロベニウスの定理の全文検索
「ペロン=フロベニウスの定理」を解説文に含む見出し語の検索結果(51~60/457件中)

シュトラッセンのアルゴリズム(Strassen algorithm)は、行列の積を高速に計算するアルゴリズムである。通常、 N × N {\displaystyle N\times N}...
シュトラッセンのアルゴリズム(Strassen algorithm)は、行列の積を高速に計算するアルゴリズムである。通常、 N × N {\displaystyle N\times N}...
ユニタリ行列(ユニタリぎょうれつ、英: unitary matrix)は、次を満たす複素正方行列 U として定義される。 U ∗ U = U U ∗ = I {\d...
ユニタリ行列(ユニタリぎょうれつ、英: unitary matrix)は、次を満たす複素正方行列 U として定義される。 U ∗ U = U U ∗ = I {\d...
ユニタリ行列(ユニタリぎょうれつ、英: unitary matrix)は、次を満たす複素正方行列 U として定義される。 U ∗ U = U U ∗ = I {\d...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
代数学において、行列の単因子(たんいんし)とは、その「標準形」を定める不変量のことである。定義D を単項イデアル整域(たとえば整数環 Z や複素係数の一変数多項式環 C[x] などのユークリッド整域)...
ナビゲーションに移動検索に移動以下の表では線型代数学ライブラリの比較を示す。この一覧は未完成です。加筆、訂正して下さる協力者を求めています。目次1 基本情報2 機能3 出典4 関連項目5 外部リンク基...




カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS