「定符号二次形式」を解説文に含む見出し語の検索結果(21~30/43件中)
数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、英: definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二...
数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、英: definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/05 06:49 UTC 版)「二次形式」の記事における「実二次形式」の解説「シルベスターの慣性法則」および「定符号二...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2009年12月)射影幾何学における二次曲面(にじきょくめん、英: quadri...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2009年12月)射影幾何学における二次曲面(にじきょくめん、英: quadri...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2009年12月)射影幾何学における二次曲面(にじきょくめん、英: quadri...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...
線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、英: Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を...