「ベルンシュタインの定理」を解説文に含む見出し語の検索結果(21~30/197件中)
集合論における連続体濃度(れんぞくたいのうど、英: cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のこと...
集合論における連続体濃度(れんぞくたいのうど、英: cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のこと...
集合論における連続体濃度(れんぞくたいのうど、英: cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のこと...
集合論における連続体濃度(れんぞくたいのうど、英: cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のこと...
集合論における連続体濃度(れんぞくたいのうど、英: cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のこと...
数学の函数解析学の分野において、バナッハ空間(バナッハくうかん、英: Banach spaces)は最も重要な研究対象の一つである。その他の解析学の分野においても、実際に現れる空間の多くはバナッハ空間...
数学における冪集合公理(べきしゅうごうこうり、英: axiom of power set)とは、公理的集合論のツェルメロ=フレンケルの公理系の一つである。ツェルメロ=フレンケルの公理系の形式言...
数学における冪集合公理(べきしゅうごうこうり、英: axiom of power set)とは、公理的集合論のツェルメロ=フレンケルの公理系の一つである。ツェルメロ=フレンケルの公理系の形式言...
可算選択公理(英: Axiom of countable choice)とは、公理的集合論における公理のひとつで、空でない集合からなる可算な集合族があったときに、それぞれの集合から一つずつ元を...
部分集合(ぶぶんしゅうごう、英: subset)とは数学における概念の一つ。集合Aが集合Bの部分集合であるとは、AがBの一部の要素だけからなることである。AがBの一部分であるという意味で部分集...