「NL_(計算複雑性理論)」を解説文に含む見出し語の検索結果(11~20/92件中)
NTIME(f(n)) とは、計算複雑性理論における複雑性クラスの表現法であり、非決定性チューリング機械を使って O(f(n)) の時間と無制限の空間(領域)を使って解くことが出来る決定問題の集合であ...
計算複雑性理論において、複雑性クラス PR とは、全ての原始再帰関数の集合、あるいは原始再帰関数で決定される全ての形式言語の集合である。これには、加算、乗算、冪乗、tetration などが含まれる。
計算複雑性理論において、複雑性クラス PR とは、全ての原始再帰関数の集合、あるいは原始再帰関数で決定される全ての形式言語の集合である。これには、加算、乗算、冪乗、tetration などが含まれる。
計算複雑性理論において、複雑性クラス RE(recursively enumerable)とは、チューリングマシン(Turing machine)で有限時間内に 'yes' という解を得られる決定問題...
計算複雑性理論において、複雑性クラス RE(recursively enumerable)とは、チューリングマシン(Turing machine)で有限時間内に 'yes' という解を得られる決定問題...
ナビゲーションに移動検索に移動ウォルター・サヴィッチ(英:Walter Savitch)は、計算複雑性理論におけるNL(非決定性対数領域)クラスを生み出したこと、NSPACEとDSPACEの関係を定義...
ナビゲーションに移動検索に移動ウォルター・サヴィッチ(英:Walter Savitch)は、計算複雑性理論におけるNL(非決定性対数領域)クラスを生み出したこと、NSPACEとDSPACEの関係を定義...
記述計算量(きじゅつけいさんりょう、英: Descriptive complexity)は、有限モデル理論の一種であり、計算複雑性理論と数理論理学の一分野である。複雑性クラスを言語で表現するのに必要と...
記述計算量(きじゅつけいさんりょう、英: Descriptive complexity)は、有限モデル理論の一種であり、計算複雑性理論と数理論理学の一分野である。複雑性クラスを言語で表現するのに必要と...
NL(えぬえる、英: Nondeterministic Logarithmic-space)は、計算複雑性理論における決定問題の複雑性クラスの一つである。非決定性チューリングマシンで対数規模の...