「対称多項式の基本定理」を解説文に含む見出し語の検索結果(1~7/7件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/03/12 08:25 UTC 版)「多変数多項式」の記事における「対称多項式の基本定理(フランス語版)」の解説任意の対称多...
代数学における適当な単位的可換環 A に係数を持つ多変数多項式(たへんすうたこうしき、英: multivariable polynomial; multivariate...
代数学における適当な単位的可換環 A に係数を持つ多変数多項式(たへんすうたこうしき、英: multivariable polynomial; multivariate...
代数学における適当な単位的可換環 A に係数を持つ多変数多項式(たへんすうたこうしき、英: multivariable polynomial; multivariate...
ニュートンの恒等式(英: Newton's identity)、ジラール-ニュートンの公式(英: Girard–Newton formula)は、べき乗和と基本対称式との関係を与える。
ニュートンの恒等式(英: Newton's identity)、ジラール-ニュートンの公式(英: Girard–Newton formula)は、べき乗和と基本対称式との関係を与える。
ニュートンの恒等式(英: Newton's identity)、ジラール-ニュートンの公式(英: Girard–Newton formula)は、べき乗和と基本対称式との関係を与える。
< 前の結果 | 次の結果 >